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Abstract
In this present paper, a quaternary gaseous reactive mixture, for which the
chemical reaction is close to its final stage and the elastic and reactive
frequencies are comparable, is modelled within the Boltzmann equation
extended to reacting gases. The main objective is a detailed analysis of the
non-equilibrium effects arising in the reactive system A1 + A2 � A3 + A4,
in a flow regime which is considered not far away from thermal, mechanical
and chemical equilibrium. A first-order perturbation solution technique is
applied to the macroscopic field equations for the spatially homogeneous gas
system, and the trend to equilibrium is studied in detail. Adopting elastic hard-
spheres and reactive line-of-centres cross sections and an appropriate choice of
the input distribution functions—which allows us to distinguish the two cases
where the constituents are either at same or different temperatures—explicit
computations of the linearized production terms for mass, momentum and total
energy are performed for each gas species. The departures from the equilibrium
states of densities, temperatures and diffusion fluxes are characterized by small
perturbations of their corresponding equilibrium values. For the hydrogen–
chlorine system, the perturbations are plotted as functions of time for both cases
where the species are either at the same or different temperatures. Moreover,
the trend to equilibrium of the reaction rates is represented for the forward and
backward reaction H2 + Cl � HCl + H.

PACS numbers: 51.10.+y, 47.70.Fw, 82.40.−g

1. Introduction

The description at various levels of physical processes involving gas phase chemical reactions
constitutes the object of great efforts of research works since the middle of the past century, for
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which the main literature can be found in the extensive bibliography set up by Kennedy [1].
The investigation of chemically reacting flows is in fact fundamental in order to make deeper
the knowledge of significant fields as plasma chemistry, atmosphere physics at high altitudes,
ionization processes accompanying the re-entry of hypersonic vehicles, chemical technology
and several others.

As focused by Shizgal and Chikhaoui in the very recent paper [2] and references cited
therein, most production dealing with the chemical kinetic Boltzmann equation (BE) is devoted
to study the influence of non-equilibrium effects on the relevant aspects of reactive systems.
A chemical reaction that takes place in a gas induces a perturbation of the local equilibrium
disturbing the molecular velocity distribution from its Maxwellian form and the reaction rate
from its equilibrium value, whereas elastic collisions contribute to restore the equilibrium.
These deviations appear to be more relevant at higher atmosphere altitudes where the elastic
collisions are not sufficient to sustain the equilibrium of the gas flow [3]. A departure from
the Maxwellian velocity distribution, due to the proceeding of the reaction itself, is in general
responsible for the reaction rate decrease and may cause qualitative changes of the system
properties.

In particular, non-equilibrium effects arising in a dilute gas system whose constituents
undergo a bimolecular chemical reaction, were recognized in the pioneering study by Prigogine
and collaborators [4, 5] since 1949, for the simple reaction A + A → B + C. They first
generalized the Chapman–Enskog solution [6] of the BE to the case of reacting gases with
slow chemical reactions, and showed that the rate coefficient decreases from early stages of
the reaction for which the role of products can be neglected.

Many authors then focused on the non-equilibrium velocity distribution functions,
searching a perturbation solution of the chemical kinetic BE, under the requirement that the
elastic characteristic time—necessary to restore the equilibrium—is shorter than the reactive
one, that is the reaction rate is relatively small and the chemical process can be treated as a weak
perturbation of the system [7–12]. The extent of the departure of the velocity distributions
from the Maxwellians is essentially estimated, as in papers [8, 9] and some others later, from
solutions of the chemical kinetic BE obtained via Chapman–Enskog procedure and Sonine
polynomial approximation to the coefficients of the distribution functions. The hard sphere
elastic and line-of-centres reactive cross sections are commonly adopted, but some other
appropriate choices, as Maxwell molecule elastic cross sections and power-law reactive cross
sections, can be employed as well [2]. However, there exist different approaches to face the
same problem, also in the presence of less simple chemical reactions, as those related to the
Grad moments method [13, 14], Monte Carlo [11, 15–20], and molecular dynamics simulations
[21–23]. In the above-cited papers, the calculations of the non-equilibrium effects have been
performed adopting, at least, one of the following simplified assumptions: the products of
the reaction are not taken into account; the effects of the reverse reaction are neglected; one
of the constituents, say A, is chosen in large excess, so that collisions among A molecules
are neglected; all constituents have a common temperature which is equal to the mixture
temperature; the reaction is of type A + A � B + B, with or without the reverse reaction, so
that the masses of the two species are equal. Non-equilibrium effects induced by bimolecular
reversible [24–27] and irreversible [28] reactions have been investigated by means of various
approaches based on the Chapman–Enskog method also in view of transport properties.
Owing to the reactive process, the temperatures of the constituents recover a meaningful role
in chemically reactive flows [9, 29–32]. This circumstance affects the departure of the reaction
rate coefficients from their equilibrium value, as widely discussed in the literature [2, 11, 16].

The main purpose of this present paper is to characterize the non-equilibrium effects on
macroscopic fields induced by a bimolecular reaction of type A1 + A2 � A3 + A4, in a more
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general case than in the above-cited papers, in the absence of the said simplified assumptions.
The gaseous chemical system of four constituents is examined near the chemical equilibrium
when the elastic and reactive characteristic frequencies are comparable, and the chemical
reaction is considered a fast process. Calculations are performed for a model of reactive hard
spheres. Two cases are analysed with reference to the assumption of constituents either at
same or different temperatures. The inclusion of the reverse reaction induces perturbations on
the reaction rate which depends on other system parameters related to the backward reaction.
Moreover, in the case of constituents at different temperatures, the reaction rate exhibits an
explicit dependence on the individual temperatures. A mathematical procedure, based on a
first-order perturbation expansion of the system variables around the thermal, mechanical and
chemical equilibrium, is applied to the balance field equations. An explicit computation of the
elastic and reactive production terms which figure in the balance equations is performed under
the above-specified temperature assumptions. In the first case, the input velocity distributions
for the constituents are expressed in terms of Maxwellians at the same temperature, plus a
small non-equilibrium term which depends on the diffusion velocities. In the second case, the
correction that arises owing to the reactive process, exhibits a further linear dependence on the
different species temperatures. The flow regime of interest here is that for which the chemical
reaction is very fast, that is the reaction time is much smaller than the flow time. Therefore, the
Damkohler number [34], which is a measure of the ratio of the scale on which reaction takes
place, assumes rather large values. The effects due to a lower range of Damkohler number
can be exploited when the model is referred to the continuum limit at the Navier–Stokes level.

The macroscopic field equations are written for the spatially homogeneous gas as a
set of coupled linearized ordinary differential equations, assuming that the macroscopic
variables are time-dependent only. The role of the temperature in the two mentioned cases is
emphasized with regard to the flow behaviour towards equilibrium. A detailed analysis of the
perturbations related to species temperatures, concentrations, diffusion fluxes, forward and
backward reaction rates, as well as affinity, is performed for the hydrogen–chlorine system.

The paper is organized as follows. In section 2 some preliminaries are recalled concerning
the mathematical formulation of the chemical kinetic BE for the quaternary gas mixture. The
corresponding macroscopic field equations, namely the balance equations and the conservation
laws, are deduced in the absence of external fields. In section 3, the linearized production terms
for mass, momentum and total energy are computed explicitly. The hard-sphere model for the
elastic collisions and the ‘line of centres’ model [33] for the reactive collisions are assumed,
and the input distributions are considered as local Maxwellians with species temperatures,
expanded in the mixture rest frame. In section 4, the system of linearized field equations
for the macroscopic variables are obtained for the two considered cases. The asymptotic
behaviours of the perturbations with respect to time are analysed in section 5 for the reaction
H2 + Cl � HCl + H by imposing different initial conditions.

2. The reactive system

Consider a gaseous mixture of four constituents Aα with molecular mass mα and formation
energy εα , undergoing a reversible bimolecular reaction of type

A1 + A2 � A3 + A4. (1)

Masses, momenta and energies are arranged so that the conservation laws hold

m1 + m2 = m3 + m4, m1c1 + m2c2 = m3c3 + m4c4, (2)

ε1 + 1
2m1c

2
1 + ε2 + 1

2m2c
2
2 = ε3 + 1

2m3c
2
3 + ε4 + 1

2m4c
2
4, (3)
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where εα represent the formation energy of constituent α whereas (c1, c2) and (c3, c4)

are the velocities of reactants and products, for the forward reaction, respectively. The
gas is characterized in the phase space by the set of one-particle distribution functions
fα ≡ f (x, cα, t), α = 1, . . . , 4, with fα dx dcα denoting the number of α-particles in the
volume element dx dcα around position x and velocity cα , at time t.

2.1. Reactive kinetic equations

In the absence of external body forces, the distribution functions fα satisfy the following
chemical kinetic Boltzmann equation

∂fα

∂t
+ cα

i

∂fα

∂xi

=
4∑

β=1

QE
αβ + QR

α , (4)

where the collision operator, according to the formalism of paper [25], splits into the
contributions QE

αβ for elastic scattering and QR
αγ for interactions with chemical reaction,

which read

QE
αβ =

∫
(f ′

αf ′
β − fαfβ)gβασβα d�βα dcβ, (5)

QR
1(2) =

∫ [
f3f4

(
m1m2

m3m4

)3

− f1f2

]
σ �

12g21 d� dc2(1), (6)

QR
3(4) =

∫ [
f1f2

(
m3m4

m1m2

)3

− f3f4

]
σ �

34g43 d�′ dc4(3). (7)

In the above equations gβα = |cβ − cα| is a relative velocity, d�αβ and d� are elements of
solid angles which characterize the scattering processes, σαβ is the differential elastic cross
section, σ �

12 and σ �
34 are differential reactive cross sections for forward and backward reaction,

respectively, related by the micro-reversibility principle in the form

σ �
34 =

(
m1m2

m3m4

)2 (
g21

g43

)2

σ �
12. (8)

The chemical kinetics of the system, neglecting the internal degrees of freedom for the
gas molecules such as rotational and vibrational energies, is based on the following form of
the chemical potential of each constituent

µα = εα − kT

[
3

2
ln T − ln nα +

3

2
ln

(
2πmαk

h2

)]
, (9)

where nα denotes the particle number density of each constituent, k is the Boltzmann constant,
h is the Planck constant and T is the temperature of the mixture.

For the reversible reaction (1), the affinity, which characterizes the deviation of the system
from the chemical equilibrium, is defined [35] by

A = −
4∑

α=1

ναµα, (10)

where the stoichiometric coefficients are such that ν1 = ν2 = −ν3 = −ν4 = −1 and the
chemical equilibrium condition assumes the form

µ
eq
1 + µ

eq
2 = µ

eq
3 + µ

eq
4 . (11)
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The mass action law is obtained from equations (9) and (11) as

E� ≡ E

kT
= 3

2
ln

(
m3m4

m1m2

)
+ ln

(
n

eq
1 n

eq
2

n
eq
3 n

eq
4

)
, (12)

where E = ε3 + ε4 − ε1 − ε2 is the binding energy difference between products and reagents,
and E� is given in units of the thermal energy of the mixture, kT . Thus the detailed expression
for the affinity follows from equations (9), (10) and (12) in the form

A = kT ln

(
n1n2n

eq
3 n

eq
4

n3n4n
eq
1 n

eq
2

)
, (13)

with A = 0 in chemical equilibrium conditions. In the above equations, the upper index ‘eq’
denotes equilibrium values.

2.2. Balance equations and conservation laws

The balance equations for mass, momentum and energy density of each constituent give the
macroscopic description of the reacting system and are classically derived from the BE (4) in
the form [26]

∂�α

∂t
+

∂

∂xi

(
�αuα

i + �αvi

) =
∫

mα


 4∑

β=1

QE
αβ + QR

α


 dcα, (14)

∂�αvα
i

∂t
+

∂

∂xj

(
pα

ij + �αuα
i vj + �αuα

j vi + �αvivj

) =
∫

mαcα
i


 4∑

β=1

QE
αβ + QR

α


 dcα, (15)

∂

∂t

[
3

2
pα + nαεα + �αuα

i vi +
1

2
�αv2

]
+

∂

∂xi

[
qα

i + pα
ij vj + nαεαuα

i +
1

2
�αuα

i v2

+

(
3

2
pα + nαεα + �αuα

j vj +
1

2
�αv2

)
vi

]

=
∫ (

1

2
mαc2

α + εα

)
 4∑

β=1

QE
αβ + QR

α


 dcα. (16)

The macroscopic observables are defined in terms of the distribution function for each
constituent α by

�α =
∫

mαfα dcα= mαnα, with � =
4∑

α=1

�α and n =
4∑

α=1

nα, (17)

�αvα
i =

∫
mαcα

i fα dcα, with �vi =
4∑

α=1

�αvα
i , (18)

uα
i = 1

�α

∫
mαξα

i fα dcα, with ξα
i = cα

i − vi and
4∑

α=1

�αuα
i = 0, (19)

pα
ij =

∫
mαξα

i ξα
j fα dcα, with pij =

4∑
α=1

pα
ij , (20)
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pα = 1

3

∫
mαξ 2

αfα dcα, with p =
4∑

α=1

pα, (21)

Tα = pα

nαk
, with T =

4∑
α=1

nα

n
Tα = p

nk
, (22)

qα
i =

∫
1

2
mαξ 2

αξα
i fα dcα, with qi =

4∑
α=1

(
qα

i + nαεαuα
i

)
. (23)

Above �α, pα, Tα, vα
i , ξα

i , uα
i , pα

ij and qα
i denote the mass density, pressure, temperature and

the components of the velocity, peculiar velocity, diffusion velocity, pressure tensor and heat
flux for each constituent α, respectively. Moreover, �, n, p, T , pij and qi represent the mass
density, particle number density, pressure, temperature and components of the pressure tensor
and heat flux of the whole mixture, respectively. Note that due to the constraint (19)3 there
exist only three independent diffusion velocities. Furthermore, the term nαεαuα

i which figures
in the expression of qi refers to the formation energy transfer of a molecule of constituent α

due to diffusion.
Since mass, momentum and total energy are preserved during both elastic and reactive

collisions, the following conditions hold true:
4∑

α=1

4∑
β=1

∫
ψαQE

αβ dcα = 0,

4∑
α=1

∫
ψαQR

α dcα = 0, (24)

for the so-called summational invariants ψα = mα,ψα = mαcα
i and ψα = 1

2mαc2
α + εα ,

alternatively. The conservation equations for mass, momentum and temperature of the whole
mixture are then obtained by summing equations (14)–(16) over all constituents, in the form

∂�

∂t
+

∂

∂xi

(�vi) = 0, (25)

∂�vi

∂t
+

∂

∂xj

(pij + �vivj ) = 0, (26)

∂

∂t

[
3

2
nkT +

4∑
α=1

nαεα +
1

2
�v2

]
+

∂

∂xi

[
qi + pijvj +

(
3

2
nkT +

4∑
α=1

nαεα +
1

2
�v2

)
vi

]
= 0.

(27)

3. Linearized elastic and reactive production terms

In order to deduce the explicit expressions for the elastic and reactive production terms which
appear in the balance equations of mass (14), momentum (15) and total energy (16), differential
elastic cross sections of rigid spheres are assumed for which

σαβ = 1
4d2

αβ, dαβ = 1
2 (dα + dβ), (28)

where dα and dβ are the diameters of the colliding spheres. The reactive cross sections,
according to the line-of-centres model [33], are those for which the kinetic energy of colliding
spheres exceeds the activation energy, namely

σ �
αβ =




0, γαβ � ε�
σ

1

4
d2

σ

(
1 − ε�

σ

γαβ

)
, γαβ > ε�

σ .
(29)
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In definition (29), dσ represents a reactive collision diameter, γαβ = mαβg2
βα

/
2kT is the

relative translational energy, ε�
σ = εσ /kT is the activation energy in units of kT , and the index

σ assumes either the value +1 for the reactants (α = 1, 2), or −1 for the products (α = 3, 4)

of the reaction. Thus, ε�
1 denotes the forward activation energy, whereas ε�

−1 = ε�
1 − E� the

backward activation energy. The elastic and reactive diameters are connected by the steric
factor sσ , namely

dσ = sσ dαβ, with s−1 =
√

m12

m34

d12

d34
s1 and 0 � s1 � 1, (30)

where m12 = m1m2/(m1 + m2),m34 = m3m4/(m3 + m4) are reduced masses.
The assumption of differential cross sections given by equations (28) and (29), together

with an appropriate choice of input distribution function, allows us to perform all the
integrations which are necessary to compute the production terms. At this end, the needed
distribution is assumed as an approximation of a local Maxwellian in the constituent rest frame
with temperature Tα and velocity vα

i :

fα = nα

(
mα

2πkTα

) 3
2

e− mα(cα
i

−vα
i

)2

2kTα . (31)

The velocity distribution (31) is then approximated, through an expansion at the first order,
around a Maxwellian in the mixture rest frame with temperature T, by the expansion

fα = nα

( mα

2πkT

) 3
2

e− mαξ2
α

2kT

[
1 +

mαξα
i

kT
uα

i +

(
mαξ 2

α

2kT
− 3

2

)
�α

]
, (32)

where �α = (Tα − T )/T and uα
i = vα

i − vi . The input function (32) thus represents a
linearization of the Maxwellian distribution (31), with respect to the diffusion velocity uα

i

and temperature difference �α . It is relevant to observe that the individual particle number
densities nα are not correlated by the chemical equilibrium condition (11). For this reason, the
input function (32) can be regarded as a deviation from the mechanical equilibrium only. The
dependence of the input function (32) on each species temperature allows one to appreciate
the mixture effects in a more detailed fashion than in the previous works [11, 29, 32] for what
concerns the reaction mechanism and heat exchanges.

The computation of the linearized elastic production terms, for α, β = 1, . . . , 4, then
leads to the following expressions:∫

mαQE
αβ dcα = 0, (33)

∫
mαcα

i QE
αβ dcα = −8

3
d2

αβ

√
2πkT

mαβ

nαnβmαβ

(
uα

i − u
β

i

)
, (34)

∫ (
1

2
mαc2

α + εα

)
QE

αβ dcα = vi

∫
mαξα

i QE
αβ dcα + 8

√
2πkT

mαβ

nαnβkT d2
αβMαMβ(�β − �α).

(35)

The computation of the linearized reactive production terms proceeds in an analogous
way, leading to∫

mαQR
α dcα = ναmαneq

α neq
γ k(0)

σ

×
{

A
kT

−
4∑

β=1

νβ(1 − Mβ)

[(
ε∗
σ +

1

2

)
− σE∗(1 − δαβ − δγβ)

]
�β

}
, (36)
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mαcα

i QR
α dcα = vi

∫
mαQR

α dcα + mαneq
α neq

γ k(0)
σ

×

σ

4∑
β=1

νβMβu
β

i − 2

3
(ε�

σ + 2)Mγ

(
uα

i − u
γ

i

) , (37)

∫ (
1

2
mαc2

α + εα

)
QR

α dcα =
(

1

2
mαv2 + εα

)∫
QR

α dcα + vi

∫
mαξα

i QR
α dcα

+
1

2
kT neq

α neq
γ k(0)

σ

{
να[3Mα + 2Mγ (ε�

σ + 2)]
A
kT

+ Mασ

4∑
β=1

νβ

[
15

2
Mβ − 9

2
+ 3(ε�

σ + 2)(1 − Mβ)

(
1 − mγ

mα

)

+ 4(1 − Mα)(δαβ − δγβ)(ε�
σ + 2) − 3σE�(1 − Mβ)(1 − δαβ − δγβ)

+ 2
mγ

mα

(1 − Mβ)
[
ε�
σ

2 + 4ε�
σ + 6 − σ(1 − δαβ − δγβ)E�(ε�

σ + 2)
]]

�β

}
. (38)

Above, (α, γ ) = (1, 2), (2, 1), (3, 4), (4, 3) and Mα = mα/(mα + mγ ). Moreover, k(0)
σ denotes

the first approximation to the rate constant and assumes the form

k
(0)
1 =

√
8πkT

m12
e−ε�

1 (s1d12)
2, k

(0)
−1 = n

eq
1 n

eq
2

n
eq
3 n

eq
4

k
(0)
1 , (39)

for the forward and backward reactions, respectively.

4. First-order perturbation technique

In this section, spatially homogeneous solutions of the field equations are analysed with the
purpose of determining the trend to equilibrium of a mixture of chemically reacting gases.
Two cases will be examined separately. In the first case, the constituents are at the same
temperature and the reacting system is described by the balance equations (14) and (15) for
mass density and diffusion velocity of each constituent α, and the conservation equation (27)
for total energy of the whole mixture. Conversely, in the second case, the constituents are
assumed at different temperatures and the reacting system is described by equations (14) and
(15) as in the first case, but the balance equation (16) for the total energy of each constituent
α is considered in place of the conservation equation (27).

4.1. Linearized field equations with constituents at same temperature

The thermodynamical description of a mixture whose constituents are at the same temperature,
which is the temperature of the mixture, is determined by the knowledge of the basic
fields of partial particle number densities nα , partial velocities vα

i and temperature of the
mixture T. The field equations for these basic fields are given, as anticipated, by the balance
equations (14), (15) and (27). In the spatially homogeneous case, the fields do depend only on
time and for processes close to the equilibrium state one can write the partial particle number
densities as

nα(t) = neq
α [1 + nα(t)], (α = 1, . . . , 4) (40)
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where nα(t) is a small deviation from the equilibrium state. Without loss of generality the
x-axis is chosen for the perturbation of the partial velocities, or equivalently for the diffusion
velocities, in such a fashion that

uα
x (t) = uα(t), (α = 1, . . . , 4) with

4∑
α=1

mαneqxeq
α uα(t) = 0. (41)

The quantity uα(t) is also considered as a small perturbation from equilibrium. Furthermore,
the temperature field is written as

T (t) = Teq[1 + T (t)], (42)

where T (t) is a small perturbation of the temperature field from the equilibrium temperature
Teq.

From the definition of the affinity (13) and the relationships (40) and (42) one can obtain
that the affinity is given by

A
kTeq

= n1(t) + n2(t) − n3(t) − n4(t). (43)

The insertion of (33)–(38), by considering �α = 0, together with (40)–(43) into the
balance equations (14), (15) and (27) leads to a linearized system of differential equations for
nα, uα and T which reads

xeq
α

dnα

dt
= ναxeq

α ζR
αγ (n1 + n2 − n3 − n4) ≡ τα, α = 1, . . . , 4. (44)

duα

dt
= −

4∑
β=1

ζE
αβMβ(uα − uβ)

+ ζR
αγ


σ

4∑
β=1

νβMβuβ − 2

3
(ε�

σ + 2)Mγ (uα − uγ )


 , α = 1, . . . , 4. (45)

dT

dt
= −2

3
x

eq
1 ζR

12E
�(n1 + n2 − n3 − n4). (46)

In the above equations τα represents the reaction rate density of constituent α whereas ζE
αβ and

ζR
αγ are elastic and reactive collision frequencies, respectively, defined by

ζE
αβ = 8

3
d2

αβ

√
2πkT

mαβ

n
eq
β , ζR

αγ = neq
γ k(0)

σ . (47)

Equations (44) together with (46) represent a coupled system of five linearized differential
equations for the partial particle number densities and temperature of the mixture, whereas
equations (45) represent a coupled system of three linearized differential equations for the
partial diffusion velocities, since due to the constraint (41)2 only three among the four
equations (45) are linearly independent.

The system of linearized differential equations (44) and (46) is solved in subsection 5.1 for
two sets of initial conditions corresponding to an equilibrium temperature of the mixture and
either positive or negative affinity of the reaction. The system (45) is solved in subsection 5.1
as well for initial conditions corresponding first to a diffusion of the reactants with products
at rest, and then to a diffusion of the products with reactants at rest.
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4.2. Linearized field equations with constituents at different temperatures

For a mixture whose constituents are at different temperatures, the thermodynamical
description is determined by the knowledge of the basic fields of partial particle number
densities nα , partial velocities vα

i and partial temperatures Tα . Now the field equations
are obtained from the balance equations (14), (15) and (16) together with (33)–(38). The
linearized field equations for the diffusion velocities are the same as those derived in the
previous subsection for constituents at same temperature, namely equations (45), thus they
will not be analysed here.

The search of spatially homogeneous solutions for the partial particle number densities
and temperature employs (40) together with the expansion

Tα(t) = Teq[1 + �α(t)], (α = 1, . . . , 4) (48)

which represent the temperature deviations of the constituents from the equilibrium
temperature of the mixture. Moreover, the deviation of the temperature of the mixture becomes
T = ∑4

α=1 x
eq
α �α, thanks to Dalton’s law [36].

The system of linearized differential equations for the partial particle number densities
and temperatures reads

dnα

dt
= ναζR

αγ

{
n1 + n2 − n3 − n4 −

4∑
β=1

νβ(1 − Mβ)

×
[(

ε∗
σ +

1

2

)
− σE∗(1 − δαβ − δγβ)

]
�β

}
≡ τα

x
eq
α

, (49)

d�α

dt
+

dnα

dt
= 2

4∑
β=1

ζE
αγ MαMβ(�β − �α)

+
1

3
ζR
αγ

{
να[2Mγ (ε�

σ + 2) + 3Mα][n1 + n2 − n3 − n4]

+ Mασ

4∑
β=1

νβ

[
15

2
Mβ − 9

2
− 3σE�(1 − Mβ)(1 − δαβ − δγβ)

+ 3(ε�
σ + 2)(1 − Mβ)

(
1 − mγ

mα

)
+ 4(1 − Mα)(δαβ − δγβ)(ε�

σ + 2)

+ 2
mγ

mα

(1 − Mβ)
[
ε�
σ

2 + 4ε�
σ + 6 − σ(1 − δαβ − δγβ)E�(ε�

σ + 2)
]]

�β

}
, (50)

where α assumes the values 1 to 4 making up a system of eight coupled differential equations
for nα and �α .

The system (49) and (50) is solved in subsection 5.2 for three different situations. The first
situation corresponds to an initial state with equilibrium concentrations and non-equilibrium
temperatures; the second one refers to an initial state with negative affinity and non-equilibrium
temperatures for the reactants; the third one is related to an initial state with positive affinity
and non-equilibrium temperatures for the products.

5. Analysis of the trend to equilibrium

In order to get explicit results for the reactive system A1 + A2 � A3 + A4, the field equations
of section 4 will be solved for the elementary reaction H2 + Cl � HCl + H. In table 1, the
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Table 1. Masses, molecular diameters and formation enthalpy at T = 298.15 K.

Gas H H2 Cl HCl

mα (×10−26 kg) 0.167 0.335 5.886 6.054
dα (×10−10 m) 1.50 2.90 1.90 3.30
�f Hα (kJ mol−1) 217.97 0 121.68 −92.31

masses mα and diameters dα of the gas molecules [9], as well as the corresponding values
[37] for the formation enthalpy �f Hα at T = 298.15 K are given. Moreover, for the forward
reaction H2 + Cl ⇀ HCl + H, the value [37] of the activation energy ε1 and the value
of coefficient A, in the Arrhenius equation k

(0)
1 = A e−ε1/kT , read ε1 = 23 kJ mol−1 and

A = 8 × 107 m3 mol−1 s−1. By considering T = 298.15 K, the steric factor for the forward
reaction is s1 = 0.636, as it follows from (39)1, and the steric factor for the backward reaction
is s−1 = 0.888, thanks to (30)2. The binding energy difference between products and reactants,
E, is related to the enthalpy of the reaction (or reaction heat) by E = �rH = ∑4

α=1 να�f Hα

and for the forward reaction H2 + Cl ⇀ HCl + H, this value reads �rH = 3.98 kJ mol−1.
One can assume that the enthalpy of the reaction does not change with the temperature, since
the difference between the heat capacities at constant pressure vanishes for gases where the
internal degrees of freedom of the molecules—such as rotational and vibrational energies—
were not taken into account. Moreover, it will be considered that the mixture’s equilibrium
particle number density consists of one mole of ideal gas for which n = 2.6 × 1025 molecules
m−3. Furthermore, the equilibrium molar fractions x

eq
α = n

eq
α

/
neq, with

∑4
α=1 x

eq
α = 1, are

restricted by the law of mass action (12). By considering x
eq
1 = x

eq
2 and x

eq
3 = x

eq
4 , there

exists only one molar fraction linearly independent which can be obtained as a function of the
temperature from the law of mass action (12), namely

E

kT
= 3

2
ln

(
m3m4

m1m2

)
+ 2 ln

2x
eq
1(

1 − 2x
eq
1

) . (51)

In the numerical simulations which will be performed in the next subsections, two
equilibrium temperatures for the mixture, Teq = 500 K and Teq = 600 K, are considered.
In subsection 5.1, for Teq = 500 K, the molar fractions are x

eq
1 = x

eq
2 = 0.364 and

x
eq
3 = x

eq
4 = 0.136, whereas for Teq = 600 K they are x

eq
1 = x

eq
2 = 0.355 and

x
eq
3 = x

eq
4 = 0.145. Conversely, in subsection 5.2, only one value of the equilibrium

temperature is considered, Teq = 500 K. In what follows, it should be reminded that subscripts
1, 2, 3 and 4 always stand for H2, Cl, HCl and H, respectively.

5.1. Asymptotic solutions with constituents at same temperature

The system of linearized differential equations (44) and (46) were solved by imposing the
following initial conditions: (i) n1 = 0.1, n2 = 0.05, n3 = 0.15, n4 = 0.1 and T = 0,

which means that initially the mixture is at the equilibrium temperature Teq and the affinity is
negative, i.e., A(0)/kTeq = −0.1 < 0 and the direction of the reaction takes place from right
to left, and (ii) n1 = 0.1, n2 = 0.15, n3 = 0.05, n4 = 0.1 and T = 0, which also means that
the initial temperature of the mixture is the equilibrium one but the affinity is positive, i.e.,
A(0)/kTeq = 0.1 > 0 and the reaction takes place from left to right.

In figure 1, it is shown the behaviour of the particle number density perturbations as
functions of a dimensionless time t� = tζR , where ζR = 108 Hz is a mean frequency of the
reactive collisions. The dashed lines correspond to a mixture with an equilibrium temperature
equal to Teq = 500 K, whereas the straight lines refer to Teq = 600 K. The left frame of this



2564 G M Kremer et al

0 2 4 6 8 10
t*

0.05

0.1

0.15

T
eq

= 500 K

T
eq

= 600 K

n
3

n
1
n

4

n
2

A(0)/kT
eq

 < 0

0 2 4 6 8 10
t*

0.05

0.1

0.15

T
eq

= 500 K

T
eq

= 600 K

n
2

n
4

n
1

n
3

A(0)/kT
eq

 > 0

Figure 1. Constituents at the same temperature. Particle number density perturbations versus time
for Teq = 500 K (dashed lines) and Teq = 600 K (solid lines). Left frame: case (i), negative
affinity. Right frame: case (ii), positive affinity.
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Figure 2. Constituents at the same temperature. Left frame: reaction rate densities versus time for
Teq = 500 K (dashed lines) and Teq = 600 K (solid lines). Right frame: temperature perturbation
versus time (case (i) below, case (ii) upper) for Teq = 500 K (dashed lines) and Teq = 600 K (solid
lines).

figure represents case (i) where the affinity is negative and one infers, as was expected, that
the perturbations n1 and n2 for the constituents H2 and Cl increase, whereas the perturbations
n3 and n4 for the constituents HCl and H decrease. Moreover, the perturbations for H2 and
HCl tend to a same constant value when the time increases, and this behaviour happens also
for the constituents Cl and H, indicating that the affinity tends to zero for large values of time
and the chemical equilibrium is reached. A similar picture is shown in the right frame of
figure 1, case (ii), where the affinity is positive and there exists a decreasing behaviour of
the perturbations n1 and n2 for H2 and Cl, and an increasing behaviour of n3 and n4 for HCl
and H. In both frames of figure 1, the decay to constant values for the perturbations of the
constituents number densities is faster when Teq = 600 K.

The time decay of the reaction rate densities is plotted in the left frame of figure 2 for
the initial conditions (i) where the affinity is negative. For the case with initial conditions
(ii), where the affinity is positive, the behaviour is quite similar provided that τ1 = τ2 is
interchanged in the figure by τ3 = τ4. Positive reaction rates, in the upper frame, imply an
increasing behaviour of the corresponding number densities n1 and n2, confirming that the
reaction occurs from right to left. As was expected the reaction rate densities become larger
by increasing the temperature but decrease more rapidly with time. The right frame of figure 2
represents the behaviour of the temperature perturbation with respect to time, and one infers
from this figure that for positive affinities the temperature of the mixture increases and an
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Figure 3. Constituents at the same temperature. Diffusion fluxes versus time for Teq = 500 K.
Left frame: products initially at rest. Right frame: reactants initially at rest.

exothermic reaction happens, while for negative affinities an endothermic reaction follows,
since the temperature of the mixture decreases. Furthermore, the temperature perturbation
tends to a constant value more rapidly when the equilibrium temperature of the mixture is
higher, since it is connected with the trend to equilibrium of the affinity (see figure 1) or the
trend to equilibrium of the reaction rate densities (see figure 2 left).

For the solution of the coupled system of linearized differential equations (45), two sets
of initial conditions are imposed. In the first case, u1 = 0.1, u3 = u4 = 0, whereas u2 is
calculated from the constraint (41)2, which represent a diffusion of the constituents H2 and Cl,
the former in the positive x-direction, the latter in the negative one, with the constituents HCl
and H at rest. In the second case, u1 = u2 = 0, u3 = 0.1, while the value of u4 is calculated
from the constraint (41)2, which represent a diffusion of the constituents HCl and H, the former
in the positive x-direction, the latter in the negative one, with now the constituents H2 and Cl
at rest. The trend to equilibrium of the diffusion fluxes, Jα = mαn

eq
α uα , is plotted in figure 3,

where now the dimensionless time is given by t� = tζE , with ζE = 4 × 109 Hz representing a
mean collision frequency of the elastic collisions. The left frame refers to the first case. One
can infer that the diffusion of the constituents HCl and H happens in the positive x-direction.
Moreover, the diffusion flux of the constituent H is very small due to its small mass and the
decay of the lighter components H and H2 occurs more rapidly with time than that of the
heavier components Cl and HCl. The right frame of figure 3 represents the time evolution of
the diffusion fluxes for the second case, and shows that the diffusion of the constituents H2

and Cl happens in the negative x-direction. The same conclusion as the former case about the
trend to equilibrium of the lighter components H and H2 can be drawn here, i.e., the decay
with time is more pronounced than that of the heavier components Cl and HCl.

5.2. Asymptotic solutions with constituents at different temperatures

The assumption of constituents at different temperatures implies that there exist two
‘thermodynamical forces’, namely, the one connected with the affinity and the other with
the departures from the equilibrium state of the species temperatures, so that the decay of the
fields do depend on both thermodynamical forces.

Here three cases are analysed corresponding to different sets of initial conditions, for
what deals the partial number density perturbations. Case 1: n1 = n2 = n3 = n4 = 0, which
means that the initial particle number densities of the constituents are those which define
the chemical equilibrium, and therefore the affinity vanishes, i.e. A(0)/KTeq = 0. Case 2:
n1 = 0.1, n2 = 0.05, n3 = 0.15, n4 = 0.1, which means that the initial affinity is negative,
namely A(0)/KTeq = −0.1 < 0. Case 3: n1 = 0.1, n2 = 0.15, n3 = 0.05, n4 = 0.1,
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Figure 4. Constituents at different temperature. Case 1: subcase (a) (solid lines); subcase
(b) (dashed lines). Left frame: partial temperature perturbations versus time for Teq = 500 K.
Right frame: reaction rate densities versus time for Teq = 500 K.

0 2 4 6 8 10
t*

-0.01

0

0.01

0.02

n
3
 = n

4

n
1
 = n

2

0 2 4 6 8 10
t*

-0.06

-0.04

-0.02

0

0.02
A

/k
T

eq

Figure 5. Constituents at different temperature. Case 1: subcase (a) (solid lines); subcase
(b) (dashed lines). Left frame: particle number density perturbations versus time for Teq = 500 K.
Right frame: affinity versus time for Teq = 500 K.

which means that the initial affinity is positive, namely A(0)/KTeq = 0.1 > 0. Moreover, for
each case, two different situations are considered, namely subcases (a) and (b), with regard
to the initial temperatures of the constituents. Subcase (a): �1(0) = �2(0) = 0.1,�3(0) =
�4(0) = 0, which implies that the initial temperatures of the constituents H2 and Cl are above
the equilibrium temperature. Subcase (b): �3(0) = �4(0) = 0.1,�1(0) = �2(0) = 0, which
implies that the initial temperatures of the constituents HCl and H are above the equilibrium
temperature.

For the first case, the behaviour of the fields are plotted in figures 4 and 5, with the straight
lines referring to the initial condition (a) whereas the dashed lines to the initial condition (b).
First it is analysed the initial condition (a) where the temperature of constituents H2 and Cl
are above the equilibrium temperature. One can infer from the left frame of figure 4 that the
temperature perturbations for the constituents H2 and Cl decay rapidly with time to a constant
value while those for the constituents HCl and H grow rapidly with time and all perturbations
tend to the same value for large values of time, i.e., all partial temperatures tend to a common
value. In the right frame of figure 4 it is plotted the decay with time of the reaction rate
densities. This figure together with the figures for the time evolution of the particle number
density perturbations (left frame of figure 5) and of the affinity (right frame of figure 5) show
that the particle densities for the constituents H2 and Cl decay with time whereas those for the
constituents HCl and H grow with time and the direction of the reaction takes place from left
to right. In case (b) where the constituents HCl and H have temperature above the equilibrium
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Figure 6. Constituents at different temperature. Perturbations of the mixture temperature versus
time for Teq = 500 K, for case 1 (dashed-dotted line), case 2 (solid line), case 3 (dashed line). Left
frame: subcase (a). Right frame: subcase (b).

one, there exists an abrupt decay of the temperature deviations of these constituents with time
which is more pronounced than that of the former case (see figure 4, left frame). Moreover,
one can conclude from the time evolution of the reaction rate densities (figure 4, right frame),
of the particle number density perturbations (figure 5, left frame) and of the affinity (figure 5,
right frame) that during a short period the particle number densities of the constituents HCl
and H decay with time but afterwards they grow with time while this behaviour is the opposite
for the constituents H2 and Cl, showing that for a short period of time the direction of reaction
takes place from the right to left but afterwards it reverses and takes place from the left to
right. Note that the affinity changes its sign during the time evolution.

The perturbations of the mixture temperature are plotted in figure 6 for initial conditions
on particle number densities of case 1 (dashed-dotted lines), of case 2 (solid lines) and of
case 3 (dotted lines). The left frame refers to initial conditions on temperature differences
of subcase (a) whereas the right frame refers to subcase (b). In the case when the
constituents H2 and Cl are initially above the equilibrium temperature of the mixture,
the temperature of the mixture decay with time and it happens an endothermic reaction
from left to right. However, when the constituents HCl and H have initial temperatures
above the equilibrium one, the temperature of the mixture increases implying an exothermic
reaction from right to left, followed by a decreasing of this temperature and an endothermic
reaction takes place from left to right. One can understand the behaviour of the two cases
(a) and (b) described above by invoking Le Châtelier’s principle [36] that states: any
depart from equilibrium of a thermodynamic variable will induce a trend to equilibrium
of the system in order to prevent the imposed modification. In case (a) where the
temperatures of the constituents H2 and Cl are above the equilibrium one, the temperatures
of constituents HCl and H must increase to prevent the imposed modification. Moreover,
the ‘thermodynamical force’ related to the affinity tends to compensate that related to the
temperature deviations from the equilibrium condition in order to impose a vanishing reaction
rate density which characterizes the chemical equilibrium state. Since the temperature
deviations never tend to zero, the affinity compensates this behaviour in the opposite direction.
For case (b) the temperature of the constituents H2 and Cl must increase to compensate the
imposed modification in the temperatures of the constituents HCl and H. The temperature
deviations in this case are smaller than those of the previous case, and the ‘thermodynamical
force’ associated with the affinity compensates rapidly that related to the temperature deviation
in such a manner that the rates of change of the perturbations of the particle number densities
reverse their signal (see the left frame of figure 5). The reaction proceeds from right to left up
to the instant of time where the affinity becomes zero. Since the temperature deviations do not
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Figure 7. Constituents at different temperature. Reaction rate densities versus time for Teq =
500 K, for case 2 (solid line), case 3 (dashed line). Left frame: subcase (a). Right frame:
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vanish at this instant of time the reaction reverses its direction in order to impose a vanishing
reaction rate density.

The analysis of the other two cases proceeds as follows. The left frames of figures 7
and 8 represent the time evolution of the reaction rate densities and of the particle number
density perturbations, respectively, when the constituents H2 and Cl are initially at a
temperature above the one that characterizes the equilibrium state, (a). The right frame of
these figures correspond to the case where the constituents HCl and H have initial temperatures
above the equilibrium one, (b). One can infer from the left frames of figures 6, 7 and 8—
which refer to the case where H2 and Cl are above the equilibrium temperature—that for an
initial positive affinity an endothermic reaction occurs from left to right. Moreover, for an
initial negative affinity the reaction starts from left to right implying an endothermic reaction
followed by a reversion in the direction, i.e., from right to left, becoming an exothermic
reaction. When the constituents HCl and H are above the equilibrium temperature, one can
conclude from the right frames of figures 6, 7 and 8, that for an initial negative affinity an
exothermic reaction with the direction from right to left occurs. Furthermore, for an initial
positive affinity the direction of the reaction takes place at the beginning from right to left
characterizing an exothermic reaction which is followed by an endothermic reaction with a
reversion in its direction, namely from left to right. For these two last cases the discussion
invoking the Le Châtelier principle proceeds in the same manner as the first case discussed
above.
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6. Conclusion

In this paper, the extent of the non-equilibrium effects induced by the reversible bimolecular
reaction (1), with constituents either at same or different temperatures, has been characterized
in a flow regime close to mechanical, chemical and thermal equilibrium, adopting reactive
hard spheres cross sections with activation energy. The non-equilibrium effects of the reverse
reaction in a quaternary reacting mixture with all constituents at different temperatures have
been investigated for the first time in the present paper. Cukrowski et al have evaluated these
effects in paper [11] assuming deviations of the Mawellian distributions with non-equilibrium
concentrations and temperatures, but in the rather simple situation of a symmetric reaction
A + A � B + B where the constituents have equal masses.

A new strategy founded on a detailed computation of the non-equilibrium production
terms and on the solution of the linearized field equations has been adopted, as an alternative
to the extended Chapman–Enskog method, widely used in the literature to evaluate the non-
equilibrium effects on the velocity distribution functions due to the chemical reaction [2, 9,
24, 28–30, 32], just to cite some pertinent papers.

The detailed computation of the production terms is achieved through a suitably linearized
velocity distribution function, which has allowed us to treat, separately, the two cases where the
constituents are assumed either at the same or different temperature. In particular, the reactive
production terms (36) and (38) for mass and energy of each constituent, due to the reactive
mechanism, permit to specify the reaction rate τα and temperature Tα of each constituent.

The idea of employing the computation of the production terms, first, leads to a more
simplified version of the chemical kinetics analysis of the trend to equilibrium, due to the
linearization of the input function performed with respect to the diffusion velocities only.
Successively, when the production terms are computed by means of linearized input functions
including also the temperature differences of each constituent (see equation (32)), an exhaustive
description turns out providing a more detailed analysis of the trend to equilibrium. In the first
description, where the constituents have common temperature, the reaction proceeds from
right to left for negative values of the affinity and vice versa, making evident the role of
the affinity and the trend to equilibrium of the macroscopic fields for the uniform gas (see
figures 1–3).

A more complete description of direct and reverse reactions is provided in the second
analysis for constituents at different temperatures, since the reaction rate does not depend on
the affinity only, but also on other thermodynamic forces related to species temperatures, as
shown by (49); see figures 4–8.

Anyway, it appears evident from the numerical simulations of section 5 that a detailed
description of the reaction rates, particle number densities and mixture temperature (see
figures 1–3), as well as the role of the affinity, is already satisfactory at level of the simplified
analysis of subsection 4.1 for which all constituents are assumed at the same temperature. On
the other hand, in the more complete analysis of subsection 4.2 for constituents at different
temperatures, an exhaustive picture of significant chemical kinetics quantities is obtained,
emphasizing the role of species temperatures towards the trend to equilibrium.

In particular, the simulations performed in subsection 5.2 for initial conditions of
subcases (a) and (b) regarding the temperatures of constituents with respect to the equilibrium
temperature, are also in agreement with Le Châtelier principle, as clearly revealed by
figure 6.

It seems reliable that the model here proposed shows a satisfactory performance in the
analysis of the asymptotic behaviour of a reacting system for which turbulence effects, as
well as Damkohler number effects, do not play any role. On the other hand, from recent
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papers dealing with turbulence modelling in the absence of chemical reactions [38–41], one
infers that consistent relationships can be stated between kinetic theory and turbulence, even
demonstrating that turbulence models can be rigorously derived from Boltzmann kinetic theory
[40, 41]. A valid perspective is then to deal with flow regimes including turbulent effects in
the frame of extended Boltzmann equation to reacting gases. Such problem however goes
beyond the aim of this paper and will be the subject of a future work.
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